Filtering in Continuous and Discrete Time

- Lowpass, highpass, bandpass filtering
- Filter response to cosine wave inputs
- Discrete-Time Fourier Transform
- Filtering based on difference equations

Copyright © 2007 by M.H. Perrott
All rights reserved.
Motivation for Filtering

Filtering is used to remove undesired signals outside of the frequency band of interest
- Enables selection of a specific radio, TV, WLAN, cell phone, cable TV channel ...
- Undesired channels are often called interferers
Lowpass Filter

- Only low frequency (i.e. baseband) portion remains
Highpass Filter

- Only high frequency (i.e. RF) portion remains

\[y(t) = 2\cos(2\pi f_0 t) \]

\[W(f) \]

\[H(f) \]

\[R(f) \]
Bandpass Filter

- Only high frequency (i.e. RF) portion remains
Why is Bandpass Filtering Useful?

- Allows removal of interfering signals
 - Highpass filtering would be of limited use here
- Typically higher complexity implementation than with lowpass or highpass filters
 - Many RF systems such as cell phones use specialized components called *SAW filters* to achieve bandpass filtering

- Only desired RF portion remains
 - Interferer eliminated
A More Formal Treatment of Filters

- An ideal filter would have a “brickwall” magnitude response and zero phase response
 - Practical filters have a more gradual magnitude rolloff and a non-zero phase response
- Design of the filter usually focuses on getting a reasonable magnitude rolloff with a specified cutoff frequency f_c (i.e., filter bandwidth)
Response of Filter to Input Cosine

- Fourier transform analysis:
 \[Y(f) = H(f)X(f) \]

- Key properties of practical filters
 - Magnitude response is even: \[|H(f_o)| = |H(-f_o)| \]
 - Phase response is odd: \[\angle H(f_o) = -\angle H(-f_o) \]
 - We'll explain why this is true in 6.003 ...
Compute Fourier Transform

Define:

\[A = |H(f_0)| \]
\[\Phi = \angle H(f_0) \]

• Fourier transform of output:

\[Y(f) = H(f)X(f) \]
\[= Ae^{-j\Phi}\delta(f+f_0) + Ae^{j\Phi}\delta(f-f_0) \]
\[= A\cos(\Phi)(\delta(f+f_0) + \delta(f-f_0)) \]
\[-A\sin(\Phi)(j\delta(f+f_0) - j\delta(f-f_0)) \]
Compute Time-Domain Response

Lowpass Filter: $H(f)$

$X(f)$ $Y(f)$

$Y(f) = A \cos(\Phi)(\delta(f+f_0) + \delta(f-f_0))$

$-A \sin(\Phi)(j \delta(f+f_0) - j \delta(f-f_0))$

• Transform back to time domain:

$y(t) = A \cos(\Phi)2 \cos(2\pi f_0 t) - A \sin(\Phi)2 \sin(2\pi f t)$

$= 2A \cos(2\pi f_0 t + \Phi)$

$= |H(f_0)|2 \cos(2\pi f_0 t + \angle H(f_0))$
Key Observations of Filter Response

- Input cosine wave is **scaled** in amplitude and **phase-shifted** in time
 - Scale factor set by magnitude of $H(f)$ at $f=f_o$
 - Phase shift set by phase of $H(f)$ at $f=f_o$

- **We typically focus only on the magnitude of the frequency response, $H(f)$, of the filter**

\[
y(t) = |H(f_o)| 2 \cos(2\pi f_o t + \angle H(f_o))
\]
Designing and Using Filters Within Matlab

• Our lab exercises will have you design and use filters in Matlab
 - Matlab will interface to the USRP board in order to receive “real world” signals from the antenna
• Matlab framework is based on discrete-time sequences (which are indexed on integer values)
 - Correspond to samples of corresponding real world signals (which are continuous-time in nature)

We need another Fourier analysis tool
The Discrete-Time Fourier Transform

- Allows us to deal with *non-periodic, discrete-time* signals
- Frequency domain signal is *periodic* in this case

\[x[n] \Leftrightarrow X(e^{j2\pi \lambda}) \]

Where:

\[
x[n] = \int_{-1/2}^{1/2} X(e^{j2\pi \lambda})e^{j2\pi \lambda n} \, d\lambda
\]

\[X(e^{j2\pi \lambda}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j2\pi \lambda n} \]

Note: *fft* function in Matlab used to compute *DTFT*
Relating to Samples of `Real World’ Signals

- Samples of a continuous-time signal with sample period T leads to frequency domain signal with period $1/T$
 - We simply scale frequency axis of fft in Matlab
- We will say much more about sampling later ...
Filters Within Matlab

- Implemented as **difference equations**
 - Current output, $y[n]$, depends on weighted values of previous output samples and current and previous input samples, $x[n]$

 \[
 y[n] = \sum_{k=1}^{M} a_k y[n - k] + \sum_{k=0}^{N} b_k x[n - k]
 \]

- **Group** a and b coefficients as vectors:

 \[
 a = [a_0 \ a_1 \ \cdots \ a_M], \quad b = [b_0 \ b_1 \ \cdots \ b_N]
 \]

- Execute filter using the **filter** command:

 \[
 y = \text{filter}(b, a, x);
 \]
Impact of Delay on DTFT

• Consider a signal that is a delayed version of another signal:
 \[y[n] = x[n - n_0] \]

• Compute DTFT of \(y[n] \)

\[
Y(e^{j2\pi \lambda}) = \sum_{n=-\infty}^{\infty} y[n]e^{-j2\pi \lambda n} = \sum_{n=-\infty}^{\infty} x[n-n_0]e^{-j2\pi \lambda n} = \sum_{m=-\infty}^{\infty} x[m]e^{-j2\pi \lambda (m+n_0)} \quad \text{(where } m = n-n_0) \\
= e^{-j2\pi \lambda n_0} \sum_{m=-\infty}^{\infty} x[m]e^{-j2\pi \lambda m} = e^{-j2\pi \lambda n_0} X(e^{j2\pi \lambda})
\]
Compute Filter Response using DTFT

\[y[n] = \sum_{k=1}^{M} a_k y[n-k] + \sum_{k=0}^{N} b_k x[n-k] \]

- Make use of the time shift property:

\[Y(e^{j2\pi \lambda}) = \sum_{k=1}^{M} a_k e^{-j2\pi \lambda k} Y(e^{j2\pi \lambda}) + \sum_{k=0}^{N} b_k e^{-j2\pi \lambda k} X(e^{j2\pi \lambda}) \]

\[\Rightarrow Y(e^{j2\pi \lambda}) \left(1 - \sum_{k=1}^{M} a_k e^{-j2\pi \lambda k} \right) = X(e^{j2\pi \lambda}) \sum_{k=0}^{N} b_k e^{-j2\pi \lambda k} \]

- Filter response is simply ratio of output over input:

\[H(e^{j2\pi \lambda}) = \frac{Y(e^{j2\pi \lambda})}{X(e^{j2\pi \lambda})} = \frac{\sum_{k=0}^{N} b_k e^{-j2\pi \lambda k}}{1 - \sum_{k=1}^{M} a_k e^{-j2\pi \lambda k}} \]
FIR Filters

- Finite Impulse Response (FIR) filters use only \(b \) coefficients in their implementation.

\[
y[n] = \sum_{k=0}^{N} b_k x[n-k] \quad \Rightarrow \quad H(e^{j2\pi \lambda}) = \sum_{k=0}^{N} b_k e^{-j2\pi \lambda k}
\]

- Example:

Note:

\[
\sum_{k=0}^{N} r^k = \frac{1 - r^{N+1}}{1 - r}
\]
Filter Order for FIR Filters

- Consider two different values for N
 - $N=3$
 - $N=7$

- Higher N leads to steeper filter response
 - We refer to N as the order of the filter

$$H(e^{j2\pi \lambda}) = \frac{1 - e^{-j2\pi \lambda(N+1)}}{1 - e^{-j2\pi \lambda}}$$
FIR Filter Design in Matlab

- Lowpass, highpass, and bandpass filters can be realized by appropriately scaling the relative value of the b coefficients
 - Higher order (i.e., higher N) leads to steeper responses
- Perform FIR filter design using \textit{fir1} command
- Frequency response observed with \textit{freqz} command

See Prelab portion of Lab 3 for details ...
Summary

• Filters can generally be classified according to
 - Lowpass, highpass, bandpass operation
 - Bandwidth and order of filter

• Given a cosine input to a filter, output is:
 - Scaled in amplitude by magnitude of filter frequency response
 - Shifted in phase by phase of filter frequency response

• Matlab operates on discrete-time signals
 - Use DTFT for analytical analysis
 - Use commands such as fir1, freqz, and filter for design and implementation of FIR filters

• Next lecture: introduce I/Q modulation and further discuss continuous-time filtering