
1

NGspice Primer
Within CppSim (Version 5) Framework

Michael H. Perrott

http://www.cppsim.com

October 12, 2013

Copyright © 2004-2013 by Michael H. Perrott
All rights reserved.

Table of Contents

Introduction ... 2
Setup (Windows 7/Vista/XP/2000) ... 3
Known Bugs .. 3
The Basics of Running NGspice Simulations ... 4

A. Running an NGspice Transient Simulation in Sue2 ... 4
B. Editing Schematic Level Module Parameters... 8
C. Editing Simulation Files (i.e., test.hspc files) ... 13
D. AC Analysis Example .. 14
E. DC Analysis Example ... 17
F. Noise Analysis Example ... 20

Using Matlab or Octave with NGspice ... 24
A. Basic Operations ... 24
B. Running Parameter Sweeps using Matlab/Octave Scripting .. 26

Using Python with Ngspice ... 31
A. Basic Operations ... 32
B. Running Parameter Sweeps using Python Scripting .. 36

More Details on CppSimView .. 40
A. Basic Plotting and Zoom Methods ... 41
D. Advanced Plotting Methods ... 43
E. Saving Plots to EPS files, FIG files, or the Windows Clipboard .. 44

More Details on Sue2 .. 45
A. Using Navigation and Edit Commands .. 45
B. Creating a New Schematic ... 46
C. Creating an Icon View (And Associated Parameters) For A Given Schematic 53

2

Introduction

CppSim is a general behavioral simulation framework that leverages the C++ language to achieve
very fast simulation times, and a graphical framework to allow ease of design entry and modification.
Users may freely use this package for either educational or industrial purposes without restriction.
However, the package and all of its components come with no warranty or support.

Starting with CppSim Version 4.1, NGspice is included as an auxiliary simulator within the CppSim
framework. At this point in time, there is no direct interaction between NGspice and the CppSim
simulator, but there are various conveniences provided for NGspice such as schematic entry using the
Sue2 schematic editor, a simple GUI interface for running NGspice simulations, a waveform viewer
using CppSimView, support for Python using the Ngspice Data module for Python, and
Matlab/Octave using the Hspice Toolbox for Matlab/Octave. All of these packages are included
within the CppSim installation file.

To install this package, a self-extracting installation file for Windows 7/Vista/XP/2000 machines is
readily downloadable from the web at http://www.cppsim.com. Running this file automatically
installs several sub-packages to perform the various tasks required:

1) Sue2: a free, open source, schematic capture program that is easy to use and has a similar look
and feel as Cadence Composer,

2) CppSimView: a free waveform viewer that allows easy plotting of signals produced by
CppSim and NGspice,

3) CppSim and Ngspice Data Modules for Python: a free, open source set of Python classes and
routines to allow straightforward access to CppSim and Ngspice simulation results within
Python.

4) Hspice Toolbox for Matlab/Octave: a free, open source set of Matlab/Octave routines to allow
straightforward access to Hspice, NGspice, and CppSim simulation results within Matlab or
Octave,

5) Emacs: a free, open source, text editor that is especially convenient for writing and editing
simulation files used with NGspice,

This document is intended as a primer that covers basic use of NGspice in conjunction with Sue2,
CppSimView, and Matlab. While this document covers enough information on running NGspice
within the CppSim framework to get a good idea of its operation, a more full description of the
capabilities and functionality of NGspice is provided in its manual available in
c:/CppSim/CppSimShared/NGspice/doc/ngspice23-manual.pdf (Note that c:/CppSim should be
replaced by the actual path you chose for CppSim during its installation). The Sue2, CppSim Data
module for Python, and Hspice Toolbox manuals are provided in the files sue2_manual.pdf,
cppsimdata_for_python.pdf, and hspice_toolbox.pdf, respectively, and are available in the Doc
menu of Sue2. Note that there is no separate manual for CppSimView – this document contains a full
description of CppSimView.

3

Setup (Windows 7/Vista/XP/2000)

Go to the web site http://www.cppsim.com/dowload, and then download the file setup_cppsim5.exe.
To install, simply run setup_cppsim5.exe in Windows (i.e., double-click on setup_cppsim5.exe in
Windows Explorer) and follow the instructions. To run Sue2 or CppSimView, click on their
respective Windows icons once the installation process has completed and Windows has restarted.

Known Bugs

1) Some computers require installation of the Microsoft Visual C++ 2008 Redistributable
Package (x86) in order to run NGspice. This is a small set of DLL files, and is easily
downloaded and installed directly from Microsoft's website at:
http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=29

2) As in keeping with SPICE conventions, the first letter of a schematic element must be

appropriately specified (i.e., R for resistor, C for capacitor, V for voltage source, etc.).
CppSim automatically provides the correct value of this letter when creating a new instance –
be sure not to change that first letter!

3) True library support is lacking in Sue2 right now (i.e., name clashing occurs between cells of
the same name even though they may be in different libraries). This issue is taken care of by
using the Import and Export tools of Sue2.

4) The undo command in Sue2 is broken.

5) Sometimes the history file of CppSimView gets corrupted and does not allow CppSimView to
start. If so, within Windows Explorer, go to the SimRuns directory associated with the current
cell of Sue2, and then erase the file called cppsimview_history.mat within that directory. As
an example, if Sue2 is currently displaying cell sd_synth_fast within library
Synthesizer_Examples, then delete the file cppsimview_history.mat located within directory
c:/CppSim/SimRuns/Synthesizer_Examples/sd_synth_fast (where c:/CppSim corresponds
to the base directory location that CppSim was installed at, and may be different for different
machines).

4

The Basics of Running NGspice Simulations

To explain the basic operation of running NGspice within the CppSim framework, let us now walk
through an example using the Sue2 as the schematic editor and CppSimView as the simulation
viewer.

A. Running an NGspice Transient Simulation in Sue2

 Open up Sue2 by clicking on its icon on the Windows Desktop. You should see a window

similar to what is shown below. Note that there is one schematic listbox and two icon
listboxes, each of which lists cells from the library that is selected by pushing their top button
as indicated by the figure.

 Select the Spice library by clicking on it in the top portion of the schematic listbox as

illustrated below

schematic
listbox

icon
listboxes

select
library

5

 Select the spice_example1 schematic by clicking on it in the schematic listbox.

 Sue2 should now display the spice_example1 schematic as shown below. Note that the
NGspice Simulation menu item is obtained by clicking on Tools (circled in red below).

6

 Clicking on the NGspice Simulation menu item, as shown above, yields the NGspice Run

Menu as shown below. Note the Netlist/HSPC/NGspice button, which is circled in red.

 Run an NGspice simulation on the spice_example1 cell by clicking on the
Netlist/HSPC/NGspice button shown in the above figure. You should see some messages in
the window along with an additional simulation window that eventually closes, and then
finally the window should appear as shown below.

7

 To view results of the simulation, click on the CppSimView Icon on the Windows Desktop.
You should see a new window appear as shown below.

 To view simulation results for a given signal within the spice_example1 cell, you need to first

choose an appropriate Output File and then the Node that the signal is associated with. In the
window shown above, first click on the No Output File radio button, and choose simrun.raw
as the output file. Next click on the No Nodes radio button, and then double-click first on
node in and then on node out. The resulting CppSimView window should appear as shown
below, and the Plot Window should show the corresponding signal waveforms.

8

 Now click on Zoom (circled above in red). The resulting Plot Window should appear as
shown below.

 Consider clicking on different buttons in the Plot Window to zoom into portions of the signals
and perform various other operations. One convenient feature is the use of the arrow keys on
your keyboard to zoom in, zoom out, and pan left and right. The down arrow key zooms in,
the up arrow key zooms out, and the left and right arrow keys pan left and right, respectively.

B. Editing Schematic Level Module Parameters

9

There are two approaches to specifying schematic level parameters when running NGspice within the
CppSim framework – one can either specify parameter values in the schematic or within the
simulation file (i.e., test.hspc for the example discussed above). We will discuss each of these
approaches in this section.

 Within the Sue2 schematic window, double-click on a given module such as M0 (circled in
red in the figure below). You may then edit the model parameters and then click on Done to
save their new values.

 To change parameters within the simulation file (i.e., test.hspc), first change the w parameter
of transistor M0 to the value w_gl as shown below and then click on the Done button.

10

 Whenever you make changes to a schematic, the title bar will show **MODIFIED** as shown in
the figure below. Be sure to save the schematic before running simulations by typing Ctrl-s or
clicking on Save within the File menu, and verify by checking that the **MODIFIED** text goes
away in the title bar.

 Now click on Netlist/HSPC/NGSpice in the NGspice Run Menu as shown below. You will find
that the ngspice simulation window appears but that the simulation does not go forward.
Unfortunately, there is no prompt telling you this, so you must simply pay attention to this sort of
issue happening. However, note that the NGspice Run Menu window will often alert you to error
messages, so be sure to examine it after every run.

11

 Now click on Quit button within the ngspice simulation window shown below. This will stop
the simulation and allow you to move forward in your investigation of what went wrong.

 Now click on View Log File in the NGspice Run Menu as shown below. You will find that an

Emacs editor session begins which displays the text file simrun.log.

 In examining the simrun.log file shown below, we see that the error is that the parameter W_GL
is undefined. This is the very same parameter w_gl that we entered into the schematic earlier, and
the issue is that we never chose its value. We will do this by editing the test.hspc simulation file,
as described in the next step.

12

 Now click on Edit Sim File in the NGspice Run Menu as shown below. An Emacs window that

displays the file test.hspc simulation file will appear.

 Within the Emacs window as shown below, edit the test.hspc simulation file to include the line:

.param w_gl=1.0u
Make sure that you save the file. You have now specified the value of w_gl, and so click on
Netlist/HSPC/NGSpice in the NGspice Run Menu to re-run the NGspice simulation. This time
the simulation should complete and you can click Load and Replot within the CppSimView
window to view the updated results (which should look identical to the previous results).

13

C. Editing Simulation Files (i.e., test.hspc files)

In the above exercise, you received some brief exposure to Simulation Files, but it will important for
you to better understand the role of these files going forward. While the Sue2 schematic describes the
overall circuit topology that is to be simulated, additional simulation specifications must be provided
to NGspice such as the type of analysis to be performed, the parameters of that analysis (such as the
time duration of a transient simulation as performed in the previous example), the value of global
parameters used within models in the schematic (as discussed in the previous section) as well as
global nodes, and many other items which are described in further detail within the NGspice, HSPC,
and transistor model documentation located under the Doc section of the Sue2 window as well as:

 NGspice Documentation: c:/CppSim/CppSimShared/NGspice/doc/ngspice23-manual.pdf
 HSPC Documentation: c:/CppSim/CppSimShared/Doc/hspc.pdf
 Berkeley BSIM4 Model Documentation:

c:/CppSim/CppSimShared/NGspice/doc/BSIM464_Manual.pdf
 ASU Predictive BSIM4 Model: http://ptm.asu.edu/

o Y. Cao, T. Sato, D. Sylvester, M. Orshansky, C. Hu, "New paradigm of predictive
MOSFET and interconnect modeling for early circuit design," pp. 201-204, CICC,
2000

14

In this section we will touch on key points related to the above documentation, but there are many
important details in the above documents which will merit their examination. Note that the CppSim
framework allows you to specify several simulation files (such as test.hspc, test_ac.hspc, etc.) in
order to perform different types of analysis on a given schematic. However, in this document, we will
focus on editing the same simulation file to perform different types of analysis.

 Continuing with the example of the previous section, if you closed the Emacs window
containing the test.hspc file, then click on the Edit Sim File button within the NGspice Run
Menu window. The test.hspc simulation file should appear within Emacs as shown in the
previous section. There are several key points to make of this file:

o Lines that start with ‘*’ are comments, and are ignored by NGspice,
o Lines that start with ‘>’ are HSPC commands, and are used to augment the normal

functions provided by NGspice. One should examine the HSPC documentation
indicated above for further information on these commands.

o Lines not falling under the above two categories are native NGspice commands. One
should examine the NGspice documentation indicated above for further information on
these commands.

D. AC Analysis Example

The previous sections illustrated the steps involved in performing transient simulations with NGspice.
Continuing with the above example, we will now focus on performing AC analysis through
modification of the simrun.hspc simulation file.

 Continuing with the example of the previous section, if you closed the Emacs window
containing the test.hspc file, then click on the Edit Sim File button within the NGspice Run
Menu window. Make the following modifications to the test.hspc file within the Emacs
window (note that the final version of the file is shown below):

o Uncomment the line: Vin in 0 0.5 ac=1
 This specifies an input voltage source to the circuit with AC magnitude of 1

o Comment the line: .tran 10p 1u
 This removes transient analysis from being performed

o Uncomment the line: .ac dec 10e3 100k 100Meg
 This specifies that AC analysis should take place for 10,000 frequency points

spaced logarithmically from 100kHz to 100MHz
o Comment the line: > timing 0.0n 0.2n [1/10e6] 0 vsupply

 This removes the HSPC timing information for the input signal that was used
for the transient simulation

o Comment the line: > input in [set 0 0 1 1 1 0 1 1 0 0 0 1 0 R]
 This removes the HSPC input signal that was used for the transient simulation

Completion of the above commands yields the file shown below. Be sure to save this file.

15

 Now click on Netlist/HSPC/NGspice in the NGspice Run Menu as shown below:

 If it is already running, exit out of CppSimView. Then restart CppSimView by clicking on
the CppSimView icon on the Windows desktop. Click on either the nodes radio button
(circled below in red) or on the Load button (whichever is appropriate) to load in the signals
from this new run in CppSimView. You should see a list of node names as shown in the
figure below.

16

 In the CppSimView window, double-click on nodes in and out. You should see a figure
similar to what is shown below (note that the Zoom button in the main CppSimView window
shown above toggles on and off the buttons in the plot window shown below). Note that
CppSimView automatically takes the magnitude of each signal (i.e., abs(in) and abs(out))
since they are complex signals in frequency domain. Note also that the magnitude of in is
equal to 1 as defined in the Simulation File above (i.e., Vin in 0 0.5 ac=1)

 For AC analysis, it is often easier to view the frequency axis in a logarithmic fashion, and to
plot magnitudes in terms of dB. In general, you can changing plotting functions from abs(.) to
ph(.) (i.e., phase of the signal) or db(.) (i.e., magnitude in dB) by simply overwriting their
value in the CppSimView plot expression section at the very bottom of the main window of
CppSimView. To view the frequency axis in logarithmic fashion, you need to add a ‘logx’
specification. As an example, modify the CppSimView plot expression as shown below, and
then push on the Load and Replot button to update the plot.

17

 After you complete the commands above, you should see a plot window similar to what is

shown below.

E. DC Analysis Example

The previous section illustrated the steps involved in performing AC analysis with NGspice.
Continuing with the above example, we will now focus on performing DC analysis through
modification of the simrun.hspc simulation file.

 Continuing with the example of the previous section, if you closed the Emacs window
containing the test.hspc file, then click on the Edit Sim File button within the NGspice Run
Menu window. Make the following modifications to the test.hspc file within the Emacs
window (note that the final version of the file is shown below):

18

o Comment the line: .ac dec 10e3 100k 100Meg
 This removes AC analysis from being performed

o Uncomment the line: .dc Vin 0.0 ‘vsupply’ 0.001
 This specifies that DC analysis should be performed by sweeping the Vin

supply from 0 to vsupply (specified as 1.3V in the .param vsupply=1.3
statement in the test.hspc file) in increments of 0.001V.

o Uncomment the line: . probe @m1[id] @m1[gm] @m1[gds] @m1[cgs] @m1[cgd]
@m1[gmbs]
 This specifies that additional signals should be saved for viewing in

CppSimView which correspond to various parameters of CMOS transistor M1.

Completion of the above commands yields the file shown below. Be sure to save this file.

 Now click on Netlist/HSPC/NGspice in the NGspice Run Menu to run the NGspice
simulation.

 Assuming CppSimView is still open from the previous section, click on the Load button to
load in the signals from this new run in CppSimView. You should see a list of node names as
shown in the figure below.

19

 In the CppSimView window, click on the Plot button indicated above. Unfortunately, the
signals are plotted in db(.) formate with logarithmic x-axis, which is not appropriate for DC
analysis. Click on the Reset Node List button to reset the plotting function as shown below.

 In the CppSimView window, double-click on nodes in and out. You should see a figure

similar to what is shown below (note that the Zoom button in the main CppSimView window
shown above toggles on and off the buttons in the plot window shown below). The x-axis

20

corresponds to the voltage sweep value, and the plots reveal how both in and out vary as a
function of this voltage sweep. You might consider looking at other signals, as well.

F. Noise Analysis Example

The previous section illustrated the steps involved in performing AC analysis with NGspice.
Continuing with the above example, we will now focus on performing noise analysis through
modification of the simrun.hspc simulation file.

 Continuing with the example of the previous section, if you closed the Emacs window
containing the test.hspc file, then click on the Edit Sim File button within the NGspice Run
Menu window. Make the following modifications to the test.hspc file within the Emacs
window (note that the final version of the file is shown below):

o Comment the line: .dc Vin 0.0 ‘vsupply’ 0.001
 This removes DC analysis from being performed

o Uncomment the line: .noise v(out) Vin dec 10e3 100k 100Meg
 This specifies that noise analysis should be performed by calculating the

voltage noise spectrum (i.e., V2/Hz) at the out node for 10,000 frequency points
spaced logarithmically from 100kHz to 100MHz. The input-referred voltage
noise spectrum should also be calculated as referenced to the output of signal
source Vin. Note that Vin must be a signal source and not a node, whereas out
corresponds to a node and not a signal source.

o Comment the line: . probe @m1[id] @m1[gm] @m1[gds] @m1[cgs] @m1[cgd]
@m1[gmbs]
 This removes plotting for these signals.

o Uncomment the line: .probe inoise_spectrum onoise_spectrum

21

 This specifies the input-referred (at the output of signal source Vin) and output-
referred (at node out) noise spectrums should be saved for plotting.

Completion of the above commands yields the file shown below. Be sure to save this file.

 Now click on Netlist/HSPC/NGspice in the NGspice Run Menu to run the NGspice
simulation.

 Assuming CppSimView is still open from the previous section, click on the Load button to
load in the signals from this new run in CppSimView. You should see a list of node names as
shown in the figure below.

22

 In the CppSimView window, click on the Plot button indicated above. Unfortunately, an
error occurs since the signals specified in the plot expression are no longer included for
plotting (note that only inoise_spectrum and onoise_spectrum are valid signals for noise
analysis with NGspice). As such, click on the Reset Node List button to reset the plotting
function as shown below.

 In the CppSimView window, double-click on nodes inoise_spectrum and onoise_spectrum.

You should see a figure similar to what is shown below (note that the Zoom button in the main

23

CppSimView window shown above toggles on and off the buttons in the plot window shown
below).

 Just as for AC analysis, it is often easier to view the frequency axis in a logarithmic fashion for
observing noise spectra. To view the frequency axis in logarithmic fashion, you need to add a
‘logx’ specification. As an example, modify the CppSimView plot expression as shown
below, and then push on the Load and Replot button to update the plot.

 After you complete the commands above, you should see a plot window similar to what is

shown below.

24

Using Matlab or Octave with NGspice

While using the NGspice Run Menu and CppSimView is a convenient interface for beginners,
more advanced users may want to consider running their simulations and doing post-processing
directly in Matlab or Octave. To use NGspice within Matlab or Octave, users simply need to add
the Hspice Toolbox commands (which come with the standard CppSim installation) to the Matlab
or Octave path. This operation is performed by typing the following in the Matlab or Octave
command window

addpath('c:/CppSim/CppSimShared/HspiceToolbox')

Note that c:/CppSim should be replaced by the actual path you chose for CppSim during the
installation.

A. Basic Operations

 As an example of running NGspice in Matlab, go to the simulation directory for the cell

spice_example1 by typing (in the Matlab command window):

cd c:/CppSim/SimRuns/Spice/spice_example1

25

Again, you must substitute the proper path that you chose for CppSim in place of c:/CppSim.
If you type ls at the Matlab prompt, you will see the many files produced by previous
simulations. The simulation file, test.hspc, should and must be present in order for the steps
that follow to work.

Once you are in the above directory, type

ngsim

at the Matlab prompt – this will run HPSC and then NGspice by default on the test.hspc file
located in the current directory. The ngsim script will use the current directory information to
determine the name of the cell and library (the current directory is the cell name (i.e.,
spice_example1), and the next directory up is the library name (i.e., spice)) and then use this
information to automatically netlist the Sue2 cell and then run the simulation. When
completed, the Matlab command window should appear similar to the following figure:

26

(Note: if one desires to run NGspice on a different simulation file, such as test2.hspc for
instance, then type the following command at the Matlab prompt: ngsim test2.hspc)

Once the run has completed, load the signals in file simrun.raw into Matlab by typing

x = loadsig('simrun.raw');

You can then view the signals contained within this file by typing

lssig(x);

Finally, plot the signals inoise_spectrum and onoise_spectrum by typing

plotsig(x,'abs(inoise_spectrum);abs(onoise_spectrum)', 'logx');

 A key advantage of using Matlab or Octave is the greatly increased flexibility it offers for

doing post-processing. In particular, one can create Matlab scripts to load in NGspice output
files (i.e., simrun.raw) and then perform sophisticated processing on the signals they contain.
To do so, one needs to turn signals embedded within NGspice output files into Matlab signals.
This is achieved for signal inoise_spectrum in the above example by typing

inoise = evalsig(x,’inoise_spectrum’);

in Matlab. The above operation allows one to now directly access the data values of
inoise_spectrum in Matlab. For instance, to view the first ten samples of inoise_spectrum,
simply type

inoise_spectrum(1:10)

in Matlab.

It is worthwhile to examine the Hspice Toolbox manual, which is provided as the PDF
document:

o c:/CppSim/CppSimShared/Doc/hspice_toolbox.pdf
for more information on the Matlab commands it offers related to viewing and post-
processing.

B. Running Parameter Sweeps using Matlab/Octave Scripting

We now consider an example of using a Matlab script to perform a parameter sweep by performing
multiple Ngspice simulations from the script

 As a first step, go to the cell gm_on_id_test by clicking on its schematic from the schematic

listbox menu in Sue2 as indicated below. Note that you need to make sure that the library for
the schematic listbox is Spice as shown in the figure.

27

 You should now see the schematic shown below, which contains a diode-connected NMOS
transistor fed by a current source.

 Now go to the simulation directory for the cell gm_on_Id_test by typing in the Matlab
command window:

cd c:/CppSim/SimRuns/Spice/gm_on_Id_test

After typing ‘ls’ in the Matlab command window, you should see the following two files:

28

 We can examine the sim_gm_curves.m script by typing in the Matlab command window:

edit sim_gm_curves.m

The resulting editor window should appear as follows:

Key commands seen in the above script include:

29

o ngsim(hspc_filename): runs Ngspice with the HSPC file indicated by
hspc_filename.

o hspc_set_param(param_name, new_value, hspc_filename): this command searches
the HSPC file specified by hspc_filename for a parameter with name param_name
and changes its value to new_value. For the above example, we change parameter
w_nmos each time before running a new Ngpice simulation using the ngsim
command.

o hspc_addline(new_line,hspc_filename): this command adds a new line specified by
new_line to the file indicated by hspc_filename. For the above example, we simply
add the line .param new_param = 1 to the test.hspc file. This is not useful for this
example, but illustrates how the command is used.

o hspc_addline_continued(new_line,hspc_filename): this command adds additional
lines beyond the new line created by the hspc_addline command. As many such lines
can added as desired, but the first one must always be hspc_addline with the rest being
hspc_addline_continued. Again, the lines added in this example are not useful here,
but illustrate how the command is used.

 Run the sim_gm_curves.m script by typing in the Matlab command window:

clf; sim_gm_curves

where clf clears the Matlab plot window and sim_gm_curves runs the script. You should see
several Ngspice simulation windows pop up and the Matlab command line will appear as
follows when the simulations have concluded:

30

o Further, the Matlab plot window should show the results of the 5 simulations as shown
below:

31

Using Python with Ngspice

To use Ngspice within Python, you simply need to import the Ngspice Data module (which comes
with the standard CppSim installation) by including the following lines in a given Python script:

import ngspicedata module
import os
import sys
if sys.platform == ‘darwin’:

home_dir = os.getenv("HOME")
sys.path.append(home_dir + ‘/CppSim/CppSimShared/Python’)

else:
cppsimsharedhome = os.getenv("CPPSIMSHAREDHOME")
sys.path.append(cppsimsharedhome + ‘/Python’)

from ngspicedata import *

The Ngspice Data module provides a class called NgspiceData to allow easy loading of simulation
data into Python, a function called ngsim() to run Ngspice simulations within Python, and some
supporting functions for running parameterized sweeps. While we will show some simple examples
below, one should read the manual CppSim and Ngspice Data Modules for Python that is available
in the Doc menu of Sue2 for further details.

For the Python examples below, it is highly recommended that you download and install the Express
(i.e., free) version of the Enthought Canopy distribution of Python available at:

https://www.enthought.com/products/epd/free/

32

Note that for Windows platforms, you should download the 32-bit version of Canopy. For Mac
platforms (assumed to be 64-bit), you should download the 64-bit version of Canopy. For Linux
platforms, you should download the version that corresponds to your Linux operating system.

A. Basic Operations

 As an example of running Ngspice in Python, go to the simulation directory for the cell

spice_example1 by typing the following command in the Canopy Python Editor window
(which we will refer to as the Python prompt):

cd c:/CppSim/SimRuns/Spice/spice_example1

For the above command, you must substitute the proper path for CppSim in place of
c:/CppSim. If you type ls at the Python prompt, you may see various files produced by
previous simulations. The simulation file, test.hspc, should and must be present in order for
the steps that follow to work. Also, you must have imported the ngspicedata module as
discussed above. The Canopy editor window below summarizes these operations:

 Once you are in the above directory, type

ngsim()

at the Python prompt – this will run Ngspice by default on the test.hspc file located in the
current directory. The ngsim() script will use the current directory information to determine
the name of the cell and library (the current directory is the cell name (i.e., spice_example1),
and the next directory up is the library name (i.e., Spice)) and then use this information to

33

automatically netlist the Sue2 cell and then run the simulation. The Canopy editor window
displays the result of running ngsim() as shown below:

Note that if one desires to run Ngspice on a different simulation file, such as test2.hspc for
instance, then type the following command at the Python prompt instead of the above:

ngsim(‘test2.hspc’)

 Once the run has completed, load the signals in file simrun.raw into Python by typing

data = NgspiceData('simrun.raw')

You can then view the signal names contained within this file by typing

data.lssig()

The Canopy editor window displays the results of running these commands as shown below:

34

 The signals in and out are loaded into corresponding Python Numpy arrays as follows:

vin = data.evalsig('in’)
vout = data.evalsig(‘out’)

One can then perform post-processing or plotting of the above signals in Python as desired. As
an example, one can plot the out signal by using the following commands:

from pylab import *
plot(vout)

These commands are also shown in the Canopy editor window below:

35

Also, the resulting plot is shown below:

36

B. Running Parameter Sweeps using Python Scripting

We now consider an example of using a Python script to perform a parameter sweep by performing
multiple Ngspice simulations from the script

 As with the Matlab example in the previous section of this document, go to the cell

gm_on_id_test by clicking on its schematic from the schematic listbox menu in Sue2 as
indicated below. Note that you need to make sure that the library for the schematic listbox is
Spice as shown in the figure. You should see the schematic shown below, which contains a
diode-connected NMOS transistor fed by a current source.

 Now go to the simulation directory for the cell gm_on_Id_test by typing the following at the
Python prompt:

cd c:/CppSim/SimRuns/Spice/gm_on_Id_test

After typing ‘ls’ at the Python prompt, you should see sim_gm_curves.py as one of the files:

37

 We can examine the sim_gm_curves.py script by typing at the Python prompt:

edit sim_gm_curves.py

The resulting editor window should appear as follows:

38

Key commands seen in the above script include:

o ngsim(hspc_filename): runs Ngspice with the HSPC file indicated by
hspc_filename.

o hspc_set_param(param_name, new_value, hspc_filename): this command searches
the HSPC file specified by hspc_filename for a parameter with name param_name
and changes its value to new_value. For the above example, we change parameter
w_nmos each time before running a new Ngpice simulation using the ngsim
command.

o hspc_addline(new_line,hspc_filename): this command adds a new line specified by
new_line to the file indicated by hspc_filename. For the above example, we simply
add the line .param new_param = 1 to the test.hspc file. This is not useful for this
example, but illustrates how the command is used.

39

o hspc_addline_continued(new_line,hspc_filename): this command adds additional
lines beyond the new line created by the hspc_addline command. As many such lines
can added as desired, but the first one must always be hspc_addline with the rest being
hspc_addline_continued. Again, the lines added in this example are not useful here,
but illustrate how the command is used.

 Run the sim_gm_curves.py script by typing at the Python prompt:

%run sim_gm_curves

You should see several Ngspice simulation windows pop up and the Python editor window
will appear as follows when the simulations have concluded:

40

o Further, the Python plot window will show the results of the 5 simulations as shown
below:

More Details on CppSimView

In this section, we will examine more details related to using CppSimView to view simulation results
from NGspice. We will so by continuing the example from the previous section. As such, we will
assume that the starting point of CppSimView is as shown below.

41

A. Basic Plotting and Zoom Methods

We have already discussed how to load in signals from an NGspice simulation and choose a
logarithmic scaled x-axis as shown in the CppSimView plot window below. We will now provide
further details on forming plot expressions, which are also documented in the Hspice Toolbox for
Matlab manual (i.e., c:/CppSim/CppSimShared/Doc/hspice_toolbox.pdf) and zoom methods for
interactive viewing of plots.

 As described in the Hspice Toolbox for Matlab manual, the plotsig() function used in

CppSimView view supports mathematical operations in the plot expression. As an example,
consider modifying the expression in the above CppSimView window such that we compare an
individual noise spectrum to the addition of two spectra. To do so, we simply modify the
expression as shown below, and use a comma separator (i.e., ‘,’) to plot within the same subplot
(note that a semicolon separator (i.e., ‘;’) is used to generate separate subplots as shown below).
For future reference, note also the Zoom button circled below.

 Plotting of the above expression (by pushing the Plot or Load and Replot button in

CppSimView) yields the figure shown below.

42

 Now click on the Zoom button (circled in the CppSimView window shown above) to bring up
zoom controls on the plot as shown below. Each of the zoom keys has a respective hot key
indicated by the parenthesis in each word. For instance, pressing z (upper or lowercase),
allows one to zoom into a subportion of the x-axis of the current plot. Exceptions to this rule
are the zoom In and Out buttons, whose hotkeys are the up and down arrow keys. Also, the
left and right pan keys, < and >, are hot-keyed to the left and right arrow keys.

o Note that no Y zoom functions are currently implemented since they are generally

unnecessary since the Y-axis gets adjusted automatically during X-zoom operations.

43

 Press the m key to begin measuring a signal. Press the left mouse button repeatedly until you
are satisfied with the point selected. Then press the right mouse button to complete the
measurement.

 Press the d key to begin a difference measurement. Press the left mouse button repeatedly
until you are satisfied with the first point to be selected. Then press the right mouse button
repeatedly until you are satisfied with the second point to be selected. Press the left mouse
button to complete the measurement.

o Note that you can combine the Measure and MeasDiff commands. First, perform a
measurement command by pressing the m key as described above. Upon completion
of this command, press the d key to begin a MeasDiff command. However, instead of
pressing the left button, press the right one. The first point will remain that selected by
the Measure command, and the second can now be set where desired. Press the left
mouse button to complete the MeasDiff operation. The advantage offered by this
option is that you can zoom into a particular part of the waveform and select an initial
point using the Measure command. You can then zoom into a different portion of the
waveform, and then left-click on MeasDiff to determine the difference from the last
point to a new point in the current zoom location by using this technique.

 Press the l key (i.e. lowercase L) to display the actual sample values from the simulation (as
indicated by circles). Press the l key again to return to solid lines for the plot.

 Press the p key to return to the previous zoom value (i.e., the last achieved through use of the
Zoom X button). Note that if you just used the Zoom X function without doing any other
zoom or pan operations, you will see no change in the plot.

 Press the Zoom button again on the CppSimView main window (as circled in the figure
above) to remove the zoom buttons from the plot window.

D. Advanced Plotting Methods

44

 There are actually five ways to perform plotting with CppSimView.
o The first is to left-click on the Plot button once an expression is entered into the bottom

command line (as demonstrated above).
o The second is to double-click on a node in the listbox as covered in previous sections

of this document. The plot expression currently selected on the plot radio button (i.e.,
plotsig(…) in the figure below) will then be filled with the selected node, and
additional subplots are created as you continue to double-click on signals. To reset the
number of subplots to one, press the Reset Node List button – it then turns back to
Plot and additional double-clicks on signals start the process over.

o The third is to enter a plot expression directly into the command line and then press the
Enter key to produce the corresponding plot. One can also modify an existing
expression created, for instance, by the second method. The latter method often proves
convenient – simply double-click on the desired signals to produce various subplots,
and then modify the resulting command line expression to implement functions on the
various signals or to position them on the same subplot (using a comma separator
rather than a semicolon).

o The fourth is to enter a plot expression in the command line, but insert # characters into
the expression where you would like to have signal names. Once you have completed
the expression, double-click on node names and observe that the # characters are
substituted from left to right with the signal names. Once the last # character has been
filled in, a plot of the expression will be produced. Note that it is useful to click on the
Reset Node List button first to clear the plot expression.

o

o The fifth method is to use the Back and Forward buttons to scroll through a history of
previous plotting expressions. Once a desired plotting expression is encountered, left-
click on the Plot button to replot it or perform alterations of the expression in the
command line as desired and then press the Enter key. Note that the history
commands are specific to the selected simulation file and output file (i.e., test.hspc and
simrun.raw, for example, in the figure below). The history keeps track of the last 400
commands used on a given cellview (i.e., for spice_example1, as an example), and it is
shared among the various simulation and output files for that cellview.

E. Saving Plots to EPS files, FIG files, or the Windows Clipboard

45

 To save plots to an eps file, fig file, or to the clipboard, press either Save to .eps File, Save to
.fig File, or Save to Clipboard, respectively, in the CppSimView main window. When saving
to the clipboard, the plots can then be pasted into other Windows applications such as Word or
PowerPoint.

More Details on Sue2

Sue2 provides a convenient graphical interface for creating and modifying circuit schematics, and is
designed to have many similarities to professional schematic captures tools such as Cadence
Composer so that IC designers can easily alternate between these tools as they iteratively perform
system and circuit level design. A more complete manual is available for Sue2 as the PDF document:

 c:/CppSim/CppSimShared/Doc/sue_manual.pdf
but we will cover enough of its operation here for users to get a good feel of this package.

Before we begin, there are two important things to keep in mind when you use Sue2:

 Always pay attention to the Help Message Window, which is to the right of the menu at the
top of the main canvas, during command operations – it provides information for bindkeys
activated while a given command is in effect

 To break out of any given command mode, hit the Esc key. This is very important to

remember – if Sue2 ever seems to lock up, hit the Esc key! (The other reason Sue2 may
appear to lock up is if an entry form was opened but not completed – in such case, be sure to
find the entry form among the Windows applications and close it to continue with Sue2).

A. Using Navigation and Edit Commands

Sue2 allows its bind-keys to be changed according to user preference by editing of the file
c:/CppSim/Sue2/.suerc. That being said, the default values of common navigation and edit bind-keys
are listed here.

 Sue2 navigation commands:

46

o f – fit view to the window size
o z – zoom in
o Z – zoom out
o Zooming can also be accomplished by pressing the right mouse button and dragging

the mouse over the region to be zoomed into
o Panning is done by either hitting the arrow keys or by holding the Ctrl key and then

dragging the mouse while the left mouse button is held down.
o e - descend into hierarchy of selected cell.
o Ctrl+e – Return to higher level of hierarchy.

 Sue2 editing commands:

o Modify the parameters of a cell within a schematic by double-clicking on the cell. A
listbox will appear that displays the cell parameters and allows their modification.

o Move cells by pressing and holding the left mouse button on the desired cell and then
dragging the mouse.

o Select multiple items by holding the left mouse button and dragging the mouse over the
items to be selected. Additional items can be added to the current selection by holding
the shift key and then progressively clicking the left mouse button on the items of
interest.

B. Creating a New Schematic

Let us now walk through an example to see how to create a new Sue2 schematic. Note that this will be
done in the context of creating a CppSim simulation, but the ideas carry directly over to NGspice.
There is no need to understand how CppSim works for this example.

For our example, we will create a pseudo-random bit stream (PRBS), pass it into a lowpass filter, and
then view the results both as time domain signals and in the form of an eye diagram.

 We will first create a new library called PRBS_Examples

o In Sue2, click on the Library Manager menu item under the Tools menu bar item as
shown in the figure below.

47

 In the Library Manager window that appears, click on Create Library as shown below.

 Choose the new library name as PRBS_Examples and then press OK.

 You should see a confirmation window in the CppSim Library Manager window as show
below. You should then Close this window.

48

 In Sue2, create a new schematic cell as follows:

o Select File -> New Schematic as shown below.

o A New Schematic window opens as shown below. Within the Save in: section, select
the current path to be c:/CppSim/SueLib. You should see the PRBS_Examples
directory as shown in the figure below.

49

o Click on the PRBS_Examples folder icon, and then specify the File name as
prbs_test_example as circled below. Left-click on the Save button, as also circled
below, to complete the creation of the new schematic. You should now see the top
banner of the schematic window state that the new schematic is
C:/CppSim/SueLib/PRBS_Examples/prbs_test_example.sue. In case this point is
not clear, please view the schematic window shown as a figure on the next page in this
document to see how this information is displayed.

 In the Sue2 icons1 listbox, as shown below, select the signal_source icon and then move the
cursor into the main Sue2 schematic window. Click on the mouse to place the icon at an
appropriate place. Then select the rcfilter icon, as circled below, and again move the mouse
into the main Sue2 schematic window to place this icon to the right of signal_source cell.

50

Finally, select the constant icon from the icons1 listbox (you must use the scroll button to see
this icon name) and then place it to the left of the signal_source cell. The main Sue2
schematic window should now appear similar to the figure displayed below.

 Save the schematic view by clicking on File->Save (or hold the Ctrl key and then press the s
key). If you now click on the top portion of the schematics listbox, as circled below, you’ll
notice that the library PRBS_Examples does not show up.

51

 The issue of PRBS_Examples not showing up as a library in Sue2 occurred since there were
previously no cells in this library. Now that you have created a cell for this library, you can
correct this issue by exiting Sue2 and then restarting it again. After doing so, you should then
click on the top portion of the schematics listbox. Now the set of libraries will include
PRBS_Examples, which should be selected. You should then choose schematic
prbs_test_examples to re-obtain the same schematic shown above.

 Select parameter values for each of the cells in the above schematic by double-clicking on
each of them and setting them as follows:

o constant cell: consval = 0.0
o signal_source cell: stype = 3, freq = prbs_freq
o rcfilter cell: fo = 300e6

select
library

52

 To connect the cells, we need to add wires. You enter wire-create mode by typing w in the

main Sue2 schematic window. To start a wire, left-click at the desired starting point (usually
at the terminal of a cell). Place the cursor at the end of the desired wire segment, and then left-
click to create a new segment. A wire is completed when it is connected to a cell or pin
terminal, though double-clicking the left mouse button (or single-clicking the right mouse
button) will force the end of a wire at any point in the schematic. Note that you must push the
Esc key to end wire mode. Given this information, complete wiring for the schematic as
shown below.

 To probe signals produced in the CppSim simulation of the schematic, we need to label all
signals of interest. We also should add pins to any nodes that we might want to bring up to the
next level of hierarchy.

o For this example, let us label the output node of the signal_source cell as sig. To do

so, click on name_net of the icons2 listbox (as circled below), move the mouse cursor
into the main schematic window, and then place the name_net icon on the wire
connected to terminal out of signal_source. Double-click on the name_net icon once
it is placed, and set its name to sig. The schematic figure below illustrates how the

53

name_net icon should look within the schematic once these operations are completed.
Note that you can also use the name_net_s icon instead of name_net to name nodes –
the only difference between them is their appearance.

o Add an output pin to the schematic by clicking on output in the icons2 listbox (as
circled above), moving the mouse cursor into the main schematic window, and then
placing the pin at the output of the rightmost wire in the schematic as shown below.
Once the output pin has been placed, double-click on it to change its name to out. Be
sure to save the schematic at the completion of these operations.

C. Creating an Icon View (And Associated Parameters) For A Given Schematic

 Assuming you are currently in the schematic shown above, creation of an associated icon is

straightforward. Simply click on Window->make icon, or press its associated bindkey, K.
The resulting icon view should appear as shown below. Be sure to click on File->Save to save
this new icon view.

54

 The newly created icon view is intended to be a template for the actual icon view desired. We

will now change its default parameter, example_param, and explain how to alter its rectangle
box.

o The two statements involving example_param are intended as a template for creating

parameters, and should either be removed or modified to reflect a parameter name of
interest. The top statement specifies how the parameter and its value will be displayed
when the icon is instantiated within a schematic. The bottom statement declares the
parameter and provides its default value.

In this case, our schematic has one parameter, prbs_freq, that we would like to
implement. To do so, double click on the two statements involved example_param
(one at a time), and replace example_param with prbs_freq. Select the default value
of prbs_freq to be 1e9, and add units of Hz to the top statement. Hit the Enter key
each time you complete the changes for a given statement. The figure below indicates
how the icon view should look upon the completion of these changes.

55

o To add more parameters, you would simply add more statements in similar fashion to
the two you just modified. Statements can be added by either copying a current
statement (click-left on a statement of interest to select it, press c, left-click again, then
left-click once more to place the copy) and then modifying the copy, or by clicking on
Edit->add text (bindkey is t) and directly entering a new text statement.

o To change the size of the icon rectangle (i.e., the green rectangle shown in the above

icon view), double-click on the rectangle and solid boxes will appear at its corners.
Left-click on one of the corner boxes and then move the mouse – the associated corner
of the rectangle will change in accordance with the mouse movements. Release the left
mouse key to retain the current position of the given rectangle corner.

 You have several options for creating shapes for icons in Sue2:

o Create a line by pushing the l (as in line) key followed by the left mouse button, and
then double-clicking on the left mouse button (or single-clicking the right mouse
button) at a different point on the canvas. Multi-segment lines are created by single
rather than double-clicking on the left mouse button at each desired breakpoint of the
line, with a double-click of the left mouse button (or single-click of the right mouse
button) to end the line. Press the shift key to limit the drawing of line segments to
either the vertical or the horizontal plane. Once a line is created, its various line
segments can be modified by first double-clicking on the line, and then pressing and
holding the left mouse button over the given breakpoint followed by dragging of the
mouse to the new desired location.

o Create an arc by pressing the a button followed by pressing (not holding) the left
mouse button, moving the mouse until the appropriate size and shape for the arc is
achieved, and then pressing the left mouse button.

o As mentioned above, create text by pushing the t key followed by the left mouse button
at the desired location for the text. Modify text by double-clicking on it with the left
mouse button and then performing edits. Only three sizes of text are available – the
size of the given text segment may be varied while in text mode by holding the Shift
key and then pressing either the left, middle or right mouse button to select the desired
size. Also, the text can be changed to either left, middle or right justified by holding
the Ctrl key then pressing either the left, middle or right mouse button.

 Save the icon view after you have completed the desired changes. The icon is ready to add to

other schematics, and can be accessed in one of the icons listboxes by selecting
PRBS_Examples as the library for a given icons listbox.

