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Integer-N Frequency Synthesizers in Wireless Systems

 Design Issues:  low noise, fast settling time, low power
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Overview of Integer-N Frequency Synthesizer

 VCO                 produces high frequency sine wave
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Overview of Integer-N Frequency Synthesizer

 VCO                 produces high frequency sine wave
 Divider            divides down VCO frequency
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Overview of Integer-N Frequency Synthesizer

 VCO                 produces high frequency sine wave
 Divider            divides down VCO frequency
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Overview of Integer-N Frequency Synthesizer

 VCO                 produces high frequency sine wave
 Divider            divides down VCO frequency
 PFD                 compares phase of ref and div
 Loop filter       smooths phase error signal
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Overview of Integer-N Frequency Synthesizer

 VCO                 produces high frequency sine wave
 Divider            divides down VCO frequency
 PFD                 compares phase of ref and div
 Loop filter       smooths phase error signal

VCO frequency locks to ref. frequency multiplied by N
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Popular VCO Structures
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 LC Oscillator:  low phase noise, large area
 Ring Oscillator:  easy to integrate, higher phase noise

8



M.H. PerrottM.H. Perrott

Model for Voltage to Frequency Mapping of VCO
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 Time-domain frequency relationship (from previous 
slide)

 Time-domain phase relationship

Model for Voltage to Phase Mapping of VCO

1/Fvco= α

1/Fvco= α+ε

out(t)

out(t)

 Intuition of integral relationship between frequency and 
phase:
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Frequency-Domain Model for VCO

 Time-domain relationship (from previous slide)

 Corresponding frequency-domain model

Laplace-Domain
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Divider

 Implementation

 Time-domain model- Frequency:

- Phase:
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Frequency-Domain Model of Divider

 Time-domain relationship between VCO phase and 
divider output phase (from previous slide)

 Corresponding frequency-domain model (same as 
Laplace-domain)
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Phase Detector (PD)

 XOR structure
- Average value of error pulses corresponds to phase error
- Loop filter extracts the average value and feeds to VCO
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Modeling of XOR Phase Detector

 Average value of pulses is extracted by loop filter
- Look at detector output over one cycle:

 Equation:
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Relate Pulse Width to Phase Error

 Two cases:
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Overall XOR Phase Detector Characteristic
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Frequency-Domain Model of XOR Phase Detector

 Assume phase difference confined within 0 to  radians
- Phase detector characteristic looks like a constant gain 

element 

 Corresponding frequency-domain model
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Loop Filter

 Consists of a lowpass filter to extract average of 
phase detector error pulses

 Frequency-domain model

 First order example
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Overall Linearized PLL Frequency-Domain Model

 Combine models of individual components

N

Φref(t) Φout(t)

Φdiv(t)

e(t) v(t)
H(s) 2πKv

s
2
π

1

Loop Filter
XOR PD

VCO

Divider

N

Φref(t) Φout(t)

Φdiv(t)

e(t) v(t)
H(f) Kv

jf
2
π

1

Laplace-Domain Model

Frequency-Domain Model

Loop Filter
XOR PD

VCO

Divider

20



M.H. PerrottM.H. Perrott

Open Loop versus Closed Loop Response

 Frequency-domain model

 Define A(f) as open loop response

 Define G(f) as a parameterizing function (related to 
closed loop response)
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Classical PLL Transfer Function Design Approach

1. Choose an appropriate topology for H(f)
 Usually chosen from a small set of possibilities

2. Choose pole/zero values for H(f) as appropriate for 
the required filtering of the phase detector output
 Constraint:  set pole/zero locations higher than 

desired PLL bandwidth to allow stable dynamics to 
be possible

3. Adjust the open-loop gain to achieve the required 
bandwidth while maintaining stability
 Plot gain and phase bode plots of A(f)
 Use phase (or gain) margin criterion to infer stability
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Example:  First Order Loop Filter

 Overall PLL block diagram

 Loop filter
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Closed Loop Poles Versus Open Loop Gain

 Higher open loop gain leads to an increase in Q of 
closed loop poles
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Corresponding Closed Loop Response

 Increase in open loop gain leads to
- Peaking in closed loop frequency response
- Ringing in closed loop step response
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The Impact of Parasitic Poles

 Loop filter and VCO may have additional parasitic 
poles and zeros due to their circuit implementation

 We can model such parasitics by including them in 
the loop filter transfer function

 Example:  add two parasitic poles to first order filter
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Closed Loop Poles Versus Open Loop Gain
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Corresponding Closed Loop Response

 Increase in open loop gain now eventually leads to 
instability
- Large peaking in closed loop frequency response
- Increasing amplitude in closed loop step response
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Response of PLL to Divide Value Changes

 Change in output frequency achieved by changing the 
divide value

 Classical approach provides no direct model of 
impact of divide value variations
- Treat divide value variation as a perturbation to a linear 

system
 PLL responds according to its closed loop response
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Response of an Actual PLL to Divide Value Change

 Example:  Change divide value by one
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- PLL responds according to closed loop response!
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What Happens with Large Divide Value Variations?

 PLL temporarily loses frequency lock (cycle slipping 
occurs)

- Why does this happen?
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Recall Phase Detector Characteristic

 To simplify modeling, we assumed that we always 
operated in a confined phase range (0 to )
- Led to a simple PD model

 Large perturbations knock us out of that confined 
phase range
- PD behavior varies depending on the phase range it 

happens to be in
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Cycle Slipping

 Consider the case where there is a frequency offset 
between divider output and reference
- We know that phase difference will accumulate

 Resulting ramp in phase causes PD characteristic to 
be swept across its different regions (cycle slipping)
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Impact of Cycle Slipping

 Loop filter averages out phase detector output
 Severe cycle slipping causes phase detector to 

alternate between regions very quickly
- Average value of XOR characteristic can be close to 

zero
- PLL frequency oscillates according to cycle slipping
- In severe cases, PLL will not re-lock

 PLL has finite frequency lock-in range!

π−π 3π nπ (n+2)π

1

-1

XOR DC characteristic
cycle slipping

Φref - Φdiv
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Back to PLL Response Shown Previously

 PLL output frequency indeed oscillates
- Eventually locks when frequency difference is small enough

- How do we extend the frequency lock-in range?
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Phase Frequency Detectors (PFD)
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 Example:  Tristate PFD
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Tristate PFD Characteristic

 Calculate using similar approach as used for XOR 
phase detector

 Note that phase error characteristic is asymmetric 
about zero phase
- Key attribute for enabling frequency detection

2π
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PFD Enables PLL to Always Regain Frequency Lock

 Asymmetric phase error characteristic allows positive 
frequency differences to be distinguished from 
negative frequency differences 
- Average value is now positive or negative according to 

sign of frequency offset
- PLL will always relock

Φref - Φdiv2π 4π 2nπ
−2π

1

-1
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cycle slipping

0
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Another PFD Structure

 XOR-based PFD
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XOR-based PFD Characteristic

 Calculate using similar approach as used for XOR phase 
detector

 Phase errror characteristic asymmetric about zero phase
- Average value of phase error is positive or negative during 

cycle slipping depending on sign of frequency error

2ππ−2π 5π4π
−3π
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phase detector
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Linearized PLL Model With PFD Structures

 Assume that when PLL in lock, phase variations are 
within the linear range of PFD
- Simulate impact of cycle slipping if desired (do not 

include its effect in model)
 Same frequency-domain PLL model as before, but 

PFD gain depends on topology used
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Type I versus Type II PLL Implementations

 Type I: one integrator in PLL open loop transfer 
function
- VCO adds on integrator
- Loop filter, H(f), has no integrators

 Type II:  two integrators in PLL open loop transfer 
function
- Loop filter, H(f), has one integrator
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 DC output range of gain block versus integrator

 Issue:  DC gain of loop filter often small and PFD 
output range is limited
- Loop filter output fails to cover full input range of VCO

VCO Input Range Issue for Type I PLL Implementations
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Options for Achieving Full Range Span of VCO

Loop
Filter

D/A

e(t) v(t)
C.P.

VDD

Gnd

Output Range
of Loop FilterCourse

Tune

No
Integrator

Loop
Filter

e(t) v(t)
C.P.

VDD

Gnd

Output Range
of Loop Filter

Contains
Integrator

Type I Type II

 Type I
- Add a D/A converter to provide coarse tuning

 Adds power and complexity
 Steady-state phase error inconsistently set

 Type II
- Integrator automatically provides DC level shifting

 Low power and simple implementation
 Steady-state phase error always set to zero
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A Common Loop Filter for Type II PLL Implementation

 Use a charge pump to create the integrator
- Current onto a capacitor forms integrator
- Add extra pole/zero using resistor and capacitor

 Gain of loop filter can be adjusted according to the 
value of the charge pump current

 Example:  lead/lag network

C1
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v(t)e(t) Charge
Pump

i(t)
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Charge Pump Implementations

 Switch currents in and out:

e(t)down(t) e(t)

Iout(t)
Iout(t)

Icp

Icp 2Icp

Icp Icp

Single-Ended Differential

up(t)
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Modeling of Loop Filter/Charge Pump

 Charge pump is gain element
 Loop filter forms transfer function

 Example:  lead/lag network from previous slide

e(t) v(t)
H(s)Icp

Loop
Filter

Charge
Pump
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PLL Design with Lead/Lag Filter

 Overall PLL block diagram

 Loop filter

 Set open loop gain to achieve adequate phase margin
- Set fz lower than and fp higher than desired PLL bandwidth
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Closed Loop Poles Versus Open Loop Gain

 Open loop gain cannot be too low or too high if 
reasonable phase margin is desired
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Impact of Parasitics When Lead/Lag Filter Used

 We can again model impact of parasitics by including 
them in loop filter transfer function

 Example:  include two parasitic poles with the lead/lag 
transfer function

C1
C2

R1

e(t) Charge
Pump

i(t) v(t)
Parasitics

50



M.H. PerrottM.H. Perrott

Closed Loop Poles Versus Open Loop Gain

 Closed loop response becomes unstable if open loop 
gain is too high

Non-dominant
poles

Dominant
pole pair

Open loop
gain

increased

120o

-180o

-140o

-160o

20log|A(f)|

f
fz

0 dB

PM = -7o for C

PM = 38o for B
PM = 46o for A

angle(A(f))

A

A

A
A

B

B

B

B

C

C

C

C

Evaluation of
Phase Margin

Closed Loop Pole
Locations of G(f)

Re{s}

Im{s}

0

fp2fp fp3

51



M.H. PerrottM.H. Perrott

Negative Issues For Type II PLL Implementations

 Parasitic pole/zero pair causes
- Peaking in the closed loop frequency response

 A big issue for CDR systems, but not too bad for wireless
- Extended settling time due to parasitic “tail” response

 Bad for wireless systems demanding fast settling time
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